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Paramutation: a process for acquiring trans-generational
regulatory states
Karl F Erhard Jr and Jay B Hollick
Basic tenets of Mendelian inheritance are violated by

paramutations in which trans-homolog interactions lead to

heritable changes in gene regulation and phenotype. First

described in plants, similar behaviors have now been noted in

diverse eukaryotes. Genetic and molecular studies of

paramutations occurring in maize indicate that components of

a small interfering RNA (siRNA) biogenesis pathway are

required for the maintenance of meiotically heritable regulatory

states. Although these findings lead to a hypothesis that

siRNAs themselves mediate paramutation interactions, an

assessment of existing data supports the opinion that siRNAs

alone are insufficient. Recent evidence implies that

transcription of paramutation-associated repeats and siRNA-

facilitated chromatin changes at affected loci are involved in

directing and maintaining the heritable changes in gene

regulation that typify paramutations.
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Introduction
Paramutations have been best characterized in Zea mays at

specific alleles of the red1 (r1), booster1 (b1), purple plant1
(pl1) and pericarp color1 (p1) loci, all of which encode

pigment regulators [1]. In all examples described to date

[2], the expression of an allele inherited in a paramutable

state (Box 1) is repressed when combined in a heterozygote

with a partner allele inherited in a paramutagenic state

(Box 1). The altered regulatory state of a newly repressed

allele is meiotically heritable, and is transmitted in a

paramutagenic state (Figure 1a). The mechanism respon-

sible for acquiring (Figure 1a) and maintaining (Figure 1c)

these trans-generationally stable regulatory states is not

fully understood. Studies in both maize [3] and mice [4]

implicate an RNA-based mechanism for transferring
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regulatory information between alleles, leading to the

speculation that some aspects of paramutation are con-

served across the eukarya [5]. Mutational analyses in maize

indicate that paramutations are affected by components of

a small interfering RNA (siRNA) biogenesis pathway

(Figure 2). These findings raise the possibility that para-

mutation represents an ‘extreme manifestation’ of an RNA

interference (RNAi)-type pathway [6].

A myriad of small RNA-based regulatory systems have now

been described across the kingdoms of life [7]. Small RNAs

can program the epigenome of gametes in both Drosophila

ovaries [8��] and Arabidopsis pollen [9��], implicating a role

for some siRNAs in transmitting epigenetic information

across generations. In plants, the majority of non-sym-

metrical cytosine methylation patterns are maintained

through the action of 24 nucleotide (nt) siRNAs generated

from repetitive sequences by alternative RNA polymerase

(RNAP) complexes (Figure 2) [3]. Recent genetic and

molecular studies in maize indicate that both the largest

[10] and second largest [11�,12] subunits (RPD1 and

RPD2a, respectively) of RNA Polymerase IV (Pol IV)

(Figure 2) affect paramutation-based repression [13],

siRNA biogenesis [10,11�,12], cytosine methylation pat-

terns [14] and transposon regulation [15��].

Many mechanistic features of paramutation remain unre-

solved, such as its developmental timing, the epigenetic

feature(s) that defines heritable paramutagenic states

(Box 1), and the molecular roles that trans-acting factors

play in affecting either the acquisition (Figure 1a) and/or

maintenance (Figure 1c) of paramutagenic states. This

review highlights recent studies of the paramutation

mechanism and argues the opinion that, while siRNAs

influence paramutation behaviors, these same siRNAs are

insufficient to account for paramutation interactions

occurring at defined maize loci.

Mechanistic link between paramutation and
siRNAs
Mutational analyses indicate that molecules responsible

for producing or stabilizing 24nt siRNAs (Figure 2) are

required to either facilitate and/or maintain paramuta-

tions [10,11�,12,14,16]. These findings lead to hypotheses

in which siRNAs mediate trans-homolog interactions as

diffusible molecules with the potential to transfer regu-

latory information between alleles [17]. However, the

exact role siRNAs play in paramutation is still unclear.

Searches for potential siRNA signatures of paramutation

have focused on the functionally important cis-linked
rans-generational regulatory states, Curr Opin Plant Biol (2011), doi:10.1016/j.pbi.2011.02.005
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Box 1 Paramutation Glossary

Paramutable: A state of gene regulation that can be heritably

changed either spontaneously or through trans-homolog interactions

Paramutagenic: Possessing the ability to facilitate heritable changes

of gene regulation in trans

Spontaneous Paramutation: Paramutable states in maize are

unstable, and can change spontaneously to paramutagenic states;

these changes can occur either somatically or germinally [36] and are

transmitted through meiosis

Facilitated or Induced Paramutation: When combined with a

paramutagenic partner, paramutable states are invariably transmitted

from such heterozygotes in a meiotically heritable paramutagenic state

Reversion: A form of paramutation in which a paramutagenic state

reacquires a non-paramutagenic form. For example, the repressed

Pl 0 state of the Pl1-Rh allele can revert to a highly expressed,

meiotically heritable Pl-Rh state after transmission through rmr

homozygous mutants or if it is transmitted from either a hemizygous

condition or heterozygous condition with certain other pl1 alleles

Trans-repression: The repression of gene expression from a

paramutable state in sporophytes dictated in trans by a paramuta-

genic partner. Loss of trans-repression can occur in rmr and mop

homozygous mutants.
repeat sequences located approximately 100 kb 50 of the

B1-I allele (upstream repeats) (Table 1). Recently,

Arteaga-Vasquez et al. found no difference in siRNA

profiles from B1-I alleles in either the B0 (paramutagenic)
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for one generation. The exact timing of this reversion event, here represente
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or the B-I (paramutable) regulatory states using both

small RNA deep sequencing and Northern blots [18�].
However, overexpression of a transgenic hairpin construct

designed to produce upstream repeat-like siRNAs does

appear to facilitate paramutation (Box 1) of a naı̈ve B-I
allele [18�]. These two results indicate that if siRNAs

themselves do facilitate b1 paramutation, then either

tissue-specificity and/or a threshold level of siRNA pro-

duction from the upstream repeats are probably important

to their function. Tissue-specific profiles of both siRNAs

and the molecular changes they facilitate at affected loci

may be needed to implicate specific siRNA functionality

in paramutation. As the heritable regulatory changes

associated with paramutation are functionally tied to

meiosis, or a process tightly linked to meiosis (see dis-

cussion of this point below), tissues enriched for inflor-

escence meristems, gametogenic cells and haploid

gametes will be relevant to assay.

Mutant analyses described to date do not appear to support

the hypothesis that siRNAs are required for all paramuta-

tion behaviors. Pl 0 states are always transmitted from Pl 0/
Pl 0 plants that are deficient for RPD2a [11�] (Figure 1d) yet

mostly Pl-Rh states are transmitted from Pl 0/Pl 0 plants

lacking RPD1 [10,13] (Figure 1e). This contrasting beha-

vior is especially curious, as both RNAP molecules are

required for the majority of 24nt siRNA accumulation
rans-generational regulatory states, Curr Opin Plant Biol (2011), doi:10.1016/j.pbi.2011.02.005
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Figure 2
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Model for an RNA-dependent DNA methylation pathway in maize. Purple symbols represent bona fide maize components and yellow symbols

represent orthologs of Arabidopsis components known to exist in the maize genome (unpublished JBH, KFE). Presumed transcription of repetitive

templates by RNA polymerase IV (Pol IV), possibly facilitated by the ATPase function of RMR1, generates single-stranded RNAs that are recognized by

the putative RNA dependent RNA polymerase MOP1. MOP1 probably synthesizes double-stranded RNAs (dsRNAs), which are cleaved into 24

nucleotide (nt) small interfering RNAs (siRNAs) by a Dicer-like ribonuclease (ZmDCL3). siRNAs are loaded onto an Argonaute4 (ZmAGO4) protein, and

guided to homologous loci in the genome by non-coding scaffold RNAs produced by Pol V, facilitated by the Snf2-like protein DRD1. The Domains

Rearranged Methyltransferase2 (ZmDRM2) is recruited by an unknown mechanism to RdDM targets, presumably via interaction with AGO4. MOP1

could potentially use siRNAs or Argonaute4-sliced RNAs as a primer for multiple rounds of dsRNA production, generating a Pol IV-independent

positive feedback loop to maintain a threshold level of siRNAs.
[10,11�,12]. Additionally, paramutation can be facilitated

(Box 1) at naı̈ve paramutable Pl-Rh alleles in the absence of

RMR1-dependent siRNAs [14] (Figure 1b). Plants with B0/
B0; +/mop2-1 genotypes have weakly pigmented B0 phe-

notypes even though RPD2a-dependent siRNAs are
Please cite this article in press as: Erhard Jr KF, Hollick JB. Paramutation: a process for acquiring t

Table 1

Functional features associated with paramutation
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depleted in these individuals [12]. However, neither pl1
or b1 paramutation can be acquired in rmr6/rpd1 [13] or

mop1/rdr2 mutants [19]. In total, these studies indicate that

siRNA action alone is insufficient for certain aspects of

paramutation, such as acquisition of paramutagenic Pl 0
rans-generational regulatory states, Curr Opin Plant Biol (2011), doi:10.1016/j.pbi.2011.02.005
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states (Box 1) and maintenance of repressed B0 and Pl 0

states in the sporophyte. It is possible that RMR1-de-

pendent siRNAs are immaterial for paramutation or that

RMR6/RPD1 and MOP1/RDR2 function, separate from

their roles in siRNA biogenesis, are required to facilitate

the acquisition of a meiotically heritable paramutagenic

state. It is also possible that only specific components affect

transcription, rather than siRNA biogenesis, of paramuta-

tion loci, leading to heritable de-repression.

Small RNAs can also act in a non-cell autonomous manner

and there are now many examples in which small RNAs

generated from companion cells or nuclei are able to

target sequences in adjacent cell types or nuclei

[8��,9��,20,21�,22�,23��]. If paramutagenicity were de-

pendent on siRNAs per se, gametophytes harboring a

particular siRNA-producing locus would produce respect-

ive sperm and eggs containing these siRNAs. However,

non-equivalent sperm cells can be produced in a single

pollen grain as a result of chromosome non-disjunction

events and, in those cases that have been examined, only

the sperm cell receiving the paramutagenic locus can

generate plants in which paramutation events continue

[24]. This result indicates that any germline transmitted

siRNAs are insufficient to facilitate paramutation in the

next generation.

Paramutation and transcriptional control of
repetitive sequences
The largest subunit of Pol IV, RPD1, is required for

maintenance of transcriptionally repressed paramutant

states of the Pl1-Rh and B1-I alleles [10,13], yet the

mechanism by which this repression occurs is still unclear.

Expression analyses of Long Terminal Repeat (LTR)

retrotransposons in rmr1, mop1/rdr2 and rmr6/rpd1 mutants

indicate that RPD1 represses LTR-type sequences by

competing with RPB1 (Pol II largest subunit) for template

recruitment and/or Pol II holoenzyme assembly at these

sites, and can do so in the absence of RMR1 and MOP1

function [15��]. The RNAP competition model proposed

by Hale et al. [15��] might account for the different devel-

opmental phenotypes observed between rmr6/rpd1 and

rmr7/mop2/rpd2a mutants [10,11�,15��,25]. In addition,

RPD2a, one of three second-largest polymerase IV-type

subunits encoded by the maize genome [11�,12], is

required for siRNA accumulation, but is not required for

potential RPD1 interference with Pol II [11�]. These

findings indicate that either RPD1 plays a role in repressing

repetitive sequences separate from its role in siRNA bio-

genesis as a subunit of Pol IV, or that there are diverse Pol

IV complexes in maize that use different RPD2-like sub-

units, perhaps in a tissue-specific manner. Differential

RNA expression patterns of the three rpd2-encoding genes

comport with such a model [12].

Repetitive sequences are genomic targets of an RNA-

dependent DNA methylation (RdDM)-type machinery
Please cite this article in press as: Erhard Jr KF, Hollick JB. Paramutation: a process for acquiring t
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(Figure 2) that maintains transcriptional repression of

paramutant states [3]. Perhaps not surprisingly, the cis-
acting sequences functionally required for paramutation

at the r1, b1 and p1 loci [26–30] are repeated sequences

(Table 1). In all three examples, the cis-acting sequences

act as transcriptional regulatory elements, indicating that

transcription of paramutagenic states is important to the

mechanism responsible for paramutation interactions. In

Arabidopsis, transcription of intergenic regions by Pol V

[31�] and Pol II [32] produce scaffold RNAs that can

guide Pol IV-dependent AGO4-bound siRNAs to tar-

geted loci (Figure 2). Scaffold RNA-producing transcrip-

tion guiding RdDM to repetitive loci presents an

attractive model that accounts for the relationship be-

tween Pol IV-dependent siRNA function and transcrip-

tion of paramutation-associated repeats. The b1 upstream

repeats are transcribed in both directions [16], primarily

by Pol II [18�], though no significant differences in

transcription rates between B0 and B-I have been noted

[16]. Determining the relationship between transcription

of repetitive sequences by diverse RNAPs, siRNA sig-

natures and the epigenetic changes mediated by siRNAs

will be important for resolving the function of siRNAs in

paramutation.

Recent findings by Brzeska et al. [33�] indicate that a

CXC-domain DNA binding protein – CBBP – may be

sufficient to induce paramutation of a naı̈ve B-I allele.

Identified in a yeast one-hybrid screen for proteins inter-

acting with a portion of the upstream repeats, CBBP was

found to form multimers that bind preferentially near a

repeat junction [33�]. Because repression of the B-I state

resulted from overexpression of cbbp from a constitutively

expressed transgene construct, it remains unknown

whether the amount of CBBP binding or the timing of

its binding are significant parameters of its function.

Repression of B-I facilitated by cbbp overexpression is

also less heritable than that facilitated (Box 1) by an

endogenous B0 allele [33�], indicating that additional

changes to the upstream repeats, besides accumulation

of the CBBP protein, are necessary for the stable change

seen in B0 paramutation. Whether CBBP is associated

with all repeats required for paramutation or just with the

b1 upstream repeats is unknown, nor how CBBP binding

may influence RNAP assembly at, and transcription of,

the repeats. Interestingly, CBBP produced from expres-

sion of the identical transgenic construct was not detect-

able by Western blot at the upstream repeats in B-I/B-I
individuals [33�], suggesting its binding may depend on

specific chromatin marks that are not present at the

repeats in B-I states (see discussion below).

Transmitting chromatin-based paramutant
states through meiosis
Genetic studies of paramutations occurring at the pl1
locus [11�,13,14] show that somatic repression in trans
of a susceptible pl1 allele (Box 1) is distinct from a
rans-generational regulatory states, Curr Opin Plant Biol (2011), doi:10.1016/j.pbi.2011.02.005
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meiotically heritable change. As discussed above, the

maintenance, but not the acquisition, of paramutation

is affected by rmr1 mutations (Figure 1b) [14]. A recent

study of the b1 upstream repeats (Table 1) in different

developmental stages of the sporophyte was designed to

distinguish between potentially heritable chromatin

marks associated with paramutation and chromatin marks

associated with somatic, tissue-specific regulation of B0

and B-I [34�]. Measuring cytosine methylation, nucleo-

some occupancy and histone modifications associated

with transcriptionally active [Histone 3 Lysine 9 acety-

lation (H3K9ac) and H3K4 methylation (H3K4me2)] and

repressed [H3K27me2, H3K27me3 and H3K9me2] chro-

matin, Haring et al. [34�] found changes consistent with

the idea that cytosine methylation plays a role in the

progression from paramutable to paramutagenic states

(i.e. B-I to B0 transition) [34�]. The upstream repeats of

B0 states are hypermethylated compared to those of B-I
states in two week old seedlings [34�]. This result com-

ports with similar analyses of the r1 locus [Table 1]

showing that paramutagenic haplotypes are hypermethy-

lated near their transcription start site relative to non-

paramutagenic states [27,35]. Histone modification differ-

ences seen at the b1 upstream repeats are most consistent

with tissue-specific regulation of B-I and B0 rather than

any meiotic-specific chromatin status of either regulatory

state. Interestingly, in a B0/B-I heterozygote, cytosine

methylation at the internal tandem repeat junctions of

the B-I allele progressively accumulates during sporo-

phyte development to resemble a more B0-like signature

[34�].

The findings of Haring et al. [34�] appear at odds with

results of genetic mosaic analyses using B0/B-I hetero-

zygotes [36], which indicate that acquisition of a mitoti-

cally stable paramutation (Figure 1a) at the b1 locus

occurs late in development. Irradiation of B0/B-I materials

at different timepoints of zygotic and early seedling de-

velopment induce somatic sectors derived from cells

lacking the chromosome arm carrying the B0 allele. Such

sectors allow direct observation of plant color phenotypes

conditioned by a B-I allele that has been exposed to a B0

allele for different numbers of mitoses during somatic

development. Sectors found relatively late in develop-

ment (10 leaf stage) still had a B-I-like pigment level [36]

indicating that 1) B-I retains its capacity for high expres-

sion even after exposure to B0 during somatic develop-

ment and 2) that B-I is initially repressed in trans by B0

before commitment to a mitotically and/or meiotically

heritable B0 state. One interpretation of these results in

relation to the cytosine methylation profiles of B1-I alleles

described by Haring et al. [34�], is that cytosine methyl-

ation accumulated at a B-I allele up until the 10 leaf stage

cannot be sufficient for its heritable repression. However,

accumulated cytosine methylation at the b1 upstream

repeats may predispose a trans-repressed B-I allele in

somatic tissue for a meiosis-dependent transition to a
Please cite this article in press as: Erhard Jr KF, Hollick JB. Paramutation: a process for acquiring t
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heritable B0 state. This hypothesis is consistent with

the fact that in plants, trans-generational inheritance of

epigenetically defined regulatory states relies on their

propagation through many rounds of mitosis as well as

meiosis [37] and gametophyte development. Whether or

not cytosine methylation defines the mitotic and/or meio-

tic heritability of paramutagenic regulatory states can now

be tested using mutants in which acquisition (Figure 1e)

and maintenance (Figure 1b, d) of paramutation are

differentially affected [11�,13,14] and in which cytosine

methylation at repetitive sequences is lost [14,15��].

Conclusions
The mechanism involved in facilitating paramutation

interactions requires the function of RdDM components

that presumably evolved to control potentially pathogenic

nucleic acids such as transposons [38]. Though the extent

to which paramutations occur in maize and other eukar-

yotes is unknown, paramutation-like inheritance patterns

may be a common mechanism of gene regulation

in repeat-rich genomes. For example, the �2.3 Gb

maize genome consists of >75% LTR retrotransposon

sequences [39] that present a large number of potential

targets for RdDM regulation even in gene-rich regions

[15,39]. Because of the non-essential nature of plant

pigments, paramutations described in maize present

excellent model systems to study a potentially common

and unappreciated mode of inheritance and gene regu-

lation.

A study of the effect on temperature and light on the

extent of paramutation occurring at the r1 locus during

early development [40�] established a link between para-

mutation and external environment sensing. Mikula’s

findings are intriguing given that potentially heritable

cytosine methylation marks are associated with the allelic

interactions that facilitate paramutation [27,28,30,34].

One can infer that the trans-acting components required

for paramutation are also potentially involved in mediat-

ing heritable changes to gene regulation in response to

environmental stimuli. Supporting this idea is the fact

that siRNA biogenesis components, including RPD1, are

required for the generation of biotic and abiotic stress-

induced small RNAs [41,42], though the expression

changes associated with these responses are not heritable.

As factors responsible for paramutation in maize have also

been linked to developmental canalization [25], it will be

of interest to determine the extent to which diverse

paramutation-like interactions [2,5], and their underlying

mechanisms, are evolutionarily conserved.

The potential for spontaneous, heritable changes to gene

regulation similar to paramutations is intriguing in terms

of a mechanism for maintaining cryptic, phenotypic vari-

ation within a species, or an inbred line of plants. The fact

that different allelic combinations can create heritable

diversity has exciting implications for how an epigenetic
rans-generational regulatory states, Curr Opin Plant Biol (2011), doi:10.1016/j.pbi.2011.02.005
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regulatory system like paramutation can influence a

phenomenon like hybrid vigor, which may be partially

dependent on the interaction of different alleles [24].

Further research on the mechanism underlying paramu-

tation promises further insights into the relationship

between heritability of phenotypes and epigenetic regu-

lation of repeat-rich genomes, as well as the character-

istics of allelic interactions that lead to heritable changes

in expression. Such information may facilitate novel

strategies for future plant improvement efforts.
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