Sharon Amacher

Professor
Faculty

Research Interests

We are interested in how cells become sequentially determined to more precisely defined fates during vertebrate embryonic development, and how this process depends upon cell position and upon interactions among neighboring cells. To address these questions, we use genetics, molecular biology, time-lapse imaging, and embryology to investigate muscle patterning and segmentation in the zebrafish embryo.

Current Projects

Mesodermal patterning. The embryonic mesoderm is specified during gastrulation, with dorsal mesoderm becoming notochord, lateral mesoderm forming muscle, and ventral mesoderm becoming blood. We are characterizing the molecular and cellular events involved in patterning the gastrula mesoderm. Two T-box transcription factors, Spadetail (Spt) and No tail (Ntl)/Brachyury are required to specify specific mesodermal cell types, and together, the two T-box genes are required for development of all trunk and tail mesoderm. To understand how Spt and Ntl mediate mesodermal cell fate decisions, we have identified putative target genes using zebrafish microarrays, and are investigating the expression and function of putative targets, as well as characterizing regulatory regions that control their T-box-regulated expression. Intriguingly, several of the putative targets encode “cyclic” genes , implicating Spt and Ntl as important upstream regulators of the segmentation clock, a dynamic molecular oscillator with a periodicity equal to that of somite formation (30 minutes in the zebrafish).

Mesodermal segmentation. Following gastrulation, the trunk and tail mesoderm becomes segmented into a reiterated series of tissue blocks called somites. Somitogenesis is regulated both spatially and temporally and is controlled by the segmentation clock and by cell-cell interactions among presomitic cells. To uncover the molecular nature of the segmentation clock, we have performed genetic screens to identify and characterize mutations that disrupt cyclic gene expression. To understand how cyclic gene expression, thus segmentation clock function, is initiated, maintained, and eventually extinguished, we have constructed a transgenic line that allows us to follow oscillating gene expression in single cells in live wildtype and mutant embryos. Using this line, we are investigating the function of candidate regulators, like Spt and Ntl and their targets, in starting, stopping, and synchronizing the segmentation clock.

Cellular interactions during somitogenesis. In addition to studying the dynamic cell behaviors that occur prior to segmentation, we also use a variety of approaches to study somitic cell behaviors during and after segmentation. To understand mutant phenotypes, and thus gene function, at the level of single cells, we are using time-lapse microscopy of wild-type and mutant embryos to observe cell-cell contacts and interactions occurring before, during, and after somites form. In zebrafish, the majority of somitic cells form muscle, and we have discovered that a small population of early-differentiating muscle cells induces the morphogenesis of their neighbors as they migrate through the somite to their final position. Currently, we are pursuing the molecular nature of the trigger.

Role of muscle-specific splicing in muscle function. In collaboration with the Conboy lab (LBNL), we have uncovered a critical role for Rbfox RNA-binding proteins in skeletal and cardiac muscle function. We have identified multiple genes with alternative exons whose splicing is altered in the absence of Rbfox function, and our knockdown experiments have shown that Rbox-deficient embryos, although quite normal by morphology, are completely paralyzed and have irregular and slow heartbeat. We are currently focusing on uncovering how the Rbfox-regulated muscle-splicing program creates specific isoforms critical for function and physiology of muscle.

Regulation of myogenic progenitor cells during regeneration and disease. Muscle stem cells, termed satellite cells, are critical for muscle regeneration after injury, and we and others are elucidating the molecular mechanisms regulating satellite cell maintenance, proliferation, and differentiation. We have found “satellite-like” myogenic progenitor cells in adult zebrafish skeletal muscle and are characterizing their proliferation and differentiation during muscle regeneration. Additionally, we are interested in identifying genes and pathways regulating satellite-like cells in healthy muscle tissue, after muscle injury, in zebrafish models of muscular dystrophy, and in muscle-derived cancers such as Rhabdomyosarcoma.
 

Selected Publications

  • Click here for a complete listing of Amacher publications

  • Martin BL, Gallagher TL, Rastogi N, Davis JP, Beattie CB, Amacher SL, Janssen PM (2015) In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae. J Appl Physiol 119, 799-806.

  • Shih NP, François P, Delaune EA, Amacher SL (2015) Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development 142, 1785-1793.

  • Talbot JC, Amacher SL (2014) A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11, 583-585. Supplement.

  • Delaune EA, François P, Shih NP, Amacher SL (2012) Single cell resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Developmental Cell 23, 995-1005.

  • Gallagher TL, Arribere JA, Geurts PA, Exner CR, McDonald KL, Dill KK, Marr HL, Adkar SS, Garnett AT, Amacher SL*, Conboy JG* (2011) Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev Biol 359, 251-261.

  • McCammon JM, Doyon Y, Amacher SL (2011) Inducing high rates for targeted mutagenesis in zebrafish using zinc finger nucleases (ZFNs). Methods Mol Biol 770, 505-527. PMID: 21805278.

  • Baskin JM, Dehnert KW, Laughlin ST, Amacher SL, Bertozzi CR (2010) Visualizing enveloping layer glycans during zebrafish early embryogenesis. Proc Natl Acad Sci USA 107, 10360-10365.

  • Garnett AT, Han TM, Gilchrist MJ, Smith JC, Eisen MB, Wardle, FC, Amacher SL (2009) Identification of direct T-box target genes in the developing zebrafish mesoderm. Development 136, 749-760.

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah G, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc finger nucleases. Nature Biotechnology 26, 702-708.

  • Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664-667.

  • Daggett DF, Domingo CR, Currie PD, Amacher SL (2007) Control of morphogenetic cell movements in the early zebrafish myotome. Dev Biol 309, 169-179.

  • Henry CA, McNulty IM, Durst WA, Munchel SE, Amacher SL (2005) Interactions between muscle fibers and segment boundaries in zebrafish. Dev Biol 287, 346-360.

  • Dill KK, Amacher SL (2005) tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level. Dev Biol 287, 225-236.

  • Henry CA, Amacher SL (2004) Zebrafish slow muscle cell migration induces a wave of fast muscle morphogenesis. Dev Cell 7, 917-923.

Areas of Expertise
  • Zebrafish development
  • Muscle development
  • RNA Biology
  • Cancer Biology

Picture for amacher.6

Phone:
614-292-1277
125A Rightmire Hall
1060 Carmack Road
Columbus, Ohio 43210